Nogo-A-deficient mice reveal strain-dependent differences in axonal regeneration.
نویسندگان
چکیده
Nogo-A, a membrane protein enriched in myelin of the adult CNS, inhibits neurite growth and regeneration; neutralizing antibodies or receptor blockers enhance regeneration and plasticity in the injured adult CNS and lead to improved functional outcome. Here we show that Nogo-A-specific knock-outs in backcrossed 129X1/SvJ and C57BL/6 mice display enhanced regeneration of the corticospinal tract after injury. Surprisingly, 129X1/SvJ Nogo-A knock-out mice had two to four times more regenerating fibers than C57BL/6 Nogo-A knock-out mice. Wild-type newborn 129X1/SvJ dorsal root ganglia in vitro grew a much higher number of processes in 3 d than C57BL/6 ganglia, confirming the stronger endogenous neurite growth potential of the 129X1/SvJ strain. cDNA microarrays of the intact and lesioned spinal cord of wild-type as well as Nogo-A knock-out animals showed a number of genes to be differentially expressed in the two mouse strains; many of them belong to functional categories associated with neurite growth, synapse formation, and inflammation/immune responses. These results show that neurite regeneration in vivo, under the permissive condition of Nogo-A deletion, and neurite outgrowth in vitro differ significantly in two widely used mouse strains and that Nogo-A is an important endogenous inhibitor of axonal regeneration in the adult spinal cord.
منابع مشابه
Using Gene Knockout and Transgenic Approaches to Evaluate in vivo Functions of CNS Regeneration Inhibitors: How Important is Nogo?
Nerve cells of the central nervous system (CNS) are distinct from the peripheral nervous system (PNS) in that they are not capable of regenerating after injury (Purves, D. et al. 2001). In recent studies, scientists have discovered that the agents causing this inability to regenerate are myelin-derived protein inhibitors that form three families—MAG, OMgp, and Nogo with a common receptor, NgR (...
متن کاملLack of Enhanced Spinal Regeneration in Nogo-Deficient Mice
The failure of regeneration of severed axons in the adult mammalian central nervous system is thought to be due partly to the presence of endogenous inhibitors of axon regeneration. The nogo gene encodes three proteins (Nogo-A, -B, and -C) that have been proposed to contribute to this inhibition. To determine whether deletion of nogo enhances regenerative ability, we generated two lines of muta...
متن کاملNogo-C is sufficient to delay nerve regeneration.
Axonal regeneration succeeds in the peripheral but not central nervous system of adult mammals. Peripheral clearance of myelin coupled with selective CNS expression of axon growth inhibitors, such as Nogo, may account for this reparative disparity. To assess the sufficiency of Nogo for limiting axonal regeneration, we generated transgenic mice expressing Nogo-C in peripheral Schwann cells. Nogo...
متن کاملAssessing Spinal Axon Regeneration and Sprouting in Nogo-, MAG-, and OMgp-Deficient Mice
A central hypothesis for the limited capacity for adult central nervous system (CNS) axons to regenerate is the presence of myelin-derived axon growth inhibitors, the role of which, however, remains poorly understood. We have conducted a comprehensive genetic analysis of the three major myelin inhibitors, Nogo, MAG, and OMgp, in injury-induced axonal growth, including compensatory sprouting of ...
متن کاملTAJ/TROY, an Orphan TNF Receptor Family Member, Binds Nogo-66 Receptor 1 and Regulates Axonal Regeneration
Myelin-associated inhibitory factors (MAIFs) are inhibitors of CNS axonal regeneration following injury. The Nogo receptor complex, composed of the Nogo-66 receptor 1 (NgR1), neurotrophin p75 receptor (p75), and LINGO-1, represses axon regeneration upon binding to these myelin components. The limited expression of p75 to certain types of neurons and its temporal expression during development pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 21 شماره
صفحات -
تاریخ انتشار 2006